Delhi Technological University

Department of Applied Chemistry

Program: M.Tech. by Research in "Chemical Engineering/ Polymer Technology"

				Se	emes	ter-]	[
Gro	S.	Cours	Course	Type/A	С	L	Т	Р	CW	PR	MT	ET	PR	Total
up	Ν	e	Name	rea	r				S	S	Е	Е	Е	Credi
_	0.	Code												ts
	1.	MSR5 01	Research and publication ethics	UCC	-	0	0	0	-	-	50	50	0	18
	2	MSR5 03	Research methodolog y	UCC	4	4	0	0	25	-	25	50	0	
	3	RPTE 505	Polymer Chemistry	DCC	4	3	0	2	15	25	20	40	0	
	4	RPTE 507	Polymer Processing	DCC	4	3	0	2	15	25	20	40	0	
	5	MSR5 09	Dissertation- 1	DCC	6			6		50			50	

				Se	mest	er-I	Ι							
Gro	S.	Cours	Course	Type/A	С	L	Т	Р	CW	PR	MT	ET	PR	Total
up	Ν	e	Name	rea	r				S	S	E	E	E	Credi
	0.	Code												ts
	1.	RPTE	Polymer	DCC	4	3	0	2	15	25	20	40	0	18
		502	Structure											
			and											
			Properties											
	2	RPTE	Polymer	DCC	4	3	0	2	15	25	20	40	0	
		504	Testing &											
			Characteriza											
			tion											
	3	MSR5	Dissertation-	DCC	6	0	0	6		50			50	
		06	2											
	4	RPTE	Elective-1	DEC/G	4	3	1	0	15	25	20	40	0	
	-	510		EC			/	/	10				Ŭ	
							0	2						
	5	MSR	MS(R)	DEC/G	4	4		0	25/	-	25/	50/	0	
		508	Project -1	EC		/	0	/	15	/25	20	40		
			5			3		2						

	Semester-III													
Gro	S.	Cours	Course	Type/A	С	L	Т	Р	CW	PR	MT	ET	PR	Total
up	Ν	e	Name	rea	r				S	S	E	E	E	Credi
	о.	Code												ts
Gro	1	MSR6	MS(R)	DEC/	4	4	0	0	25/	-	25/	50/	0	
up A		01	Project -2	GEC		/		/	15	/25	20	40		
						3		2						
	2	MSR	Dissertation	DCC	1				-	40/	-	-	60/	16
		603	- 3		2	0	0	1		50			50	
								2						

	Semester-IV													
Gro	S.	Cours	Course	Type/A	С	L	Т	Р	CW	PR	MT	ET	PR	Total
up	Ν	e	Name	rea	r				S	S	E	E	E	Credi
	0.	Code												ts
Gro	1		Final											
up A		MSR6	Dissertation											
		02		DCC	2	0	0	2	-	-	-	-	10	24
					4			4					0	

Detailed Syllabus

	Polymer Chemistry	
Teaching Scheme	L-T-P: 3-0-2	

Course Outcome

After completing this course, students will be able to

- Elaborate on step-growth and chain polymerization with respect to mechanism and kinetics.
- Explain the general reaction course for ring-opening, cycloaddition, and coordination polymerization
- Compare and value the homogenous, heterogenous, and interfacial polymerization techniques.
- Evaluate copolymer composition and predict copolymerization behavior considering different parameters of copolymerization.
- Develop sustainable polymers using new monomers

Syllabus Content:

Unit 1: Introduction- Nomenclature, classification, general characteristics of polymers, ring-opening polymerization, coordination polymerization, and cyclopolymerization.

Unit 2: Step-Growth Polymerization- General characteristics & chemistry of condensation polymerization, Ring vs Chain formation, Requirement of high conversion & high molecular weight polymer, step copolymerization, polymerization kinetics: the concept of equal reactivity of functional group, non-linearity in step growth polymerization, step growth polymerization other than poly-esterification, catalyzed vs uncatalyzed, kinetics analysis of polymerization of A-A with B-B' and non-stoichiometric polymerization

Unit 3: Chain growth polymerization- General characteristics & chemistry of chain growth polymerization, Ionic vs radical polymerization, nature of radical chain polymerization, the effect of substituents, constitutional isomerism: experimental evidence and synthesis; Initiator and initiation systems, initiator efficiency, types of radical initiation; kinetic expression for the rate of initiation and polymerization

Unit 4: Copolymerization- General considerations, types of copolymers, significance of copolymerization, kinetic equation, copolymerization behavior for alternate, random, block, graft copolymer

Unit 5: Polymerization techniques- solution, emulsion, bulk, suspension

Unit 6: Purification techniques- Solvent-Nonsolvent extraction, isolation, centrifugation

Refere	References:							
\checkmark	Textbook of Polymer Science, F.W. Billmeyer, John Wiley, 2008							
\checkmark	Polymer Science, V.R. Gowarikar, New Age International, 2016							
\checkmark	Polymer Chemistry, M.P. Stevens, Oxford University Press, 1999							
\triangleright	Principle of Polymerization, G. Odian, Wiley, 2004							

Polymer Struct	ure and Properties
Teaching Scheme	L-T-P: 3-0-2

Course Outcome

After completing this course, students will be able to

- Predict polymer properties such as mechanical, rheological, thermal based on their structure.
- Acquire in-depth knowledge of the molecular weight of the polymer and its relation with mechanical properties
- Analyze the structure of polymers using modern analytical techniques and able to explain the data.

Syllabus Content:

Unit 1: Polymer molecular weight and its importance, molecular weight and its distribution method of determining different molecular weights, number average, weight average, viscosity average, z-average molecular weights, and polydispersity index and its significance.

Unit 2: Polymer Structure analysis, configuration, the conformation of polymers, structure, and properties of amorphous, semi-crystalline, and cross-linked polymers, crystal morphologies: unit cell structure, extended chain crystals, chain folding, lamellae, and spherules

Unit 3: Thermal properties of polymers, glass transition temperature (Tg), melting temperature (Tm), softening temperature (Ts), degradation temperature, flow temperature, tack temperature, flex at lower temperature, factors affecting the Tg and Tm of polymers, thermal analysis of polymer by dilatometer, TGA, DSC, DTA and HDT, determination of crystallinity and crystallization Kinetics

Unit 4: Types of fluids, viscoelastic properties of the polymer, basics of rheological characteristics, experimental determination, mechanical models (Maxwell model, Kelvin-Voigt model), determination of rheological properties through viscometers and DMTA.

Unit 5: Mechanical properties of polymer strength (creep, fatigue, stress relaxation tensile, flexural, and compressive), hardness, resilience, impact properties, factors affecting these properties, methods of determination of these properties

Unit 6: Optical properties of polymers (haze, glaze, refractive index).

Refere	nces:
\checkmark	Polymer Science & Technology, P. Ghosh, Tata McGraw Hill, 2001
\checkmark	Thermal Analysis of Polymeric Materials, Wunderlich, Springer, 2005
4	Handbook of Plastic Testing & Failure Analysis, V. Shah, Wiley Inter-science, 2006
	Testing & Evaluation of Plastics, Mathur & Bhardwaj, Allied Publishers Pvt Ltd, 2003

Polymer Processing						
Teaching Scheme	L-T-P: 3-0-2					

Course Outcome	
After completing this course, students will be able to	
• Prepare polymeric recipes to meet required product properties.	

- Identify the polymer compounding operations depending on the material and final product requirements.
- Solve simple flow problems and calculations in the extrusion process
- To describe the working principle of the Polymer Processing Machines.
- Identify and solve the problems related products developed through Polymer Processing Machines
- Create and apply appropriate polymer processing techniques to give engineering solutions for new polymers.

Syllabus Content:

Unit 1: The importance of polymer compounding, the additives used in compounding, their functions in compounded products, and mixing techniques.

Unit 2: Working principle of single screw extruder, twin screw extruder, vent extruder, process of manufacturing films, tubes, rods, laminates, coatings

Unit 3: Compression molding machine: types, principles of operations, molding cycle, the meaning of terms bulk factor and flow properties as applied to molding materials, the interplay of heat, pressure, friction, catalysts, etc. for thermosetting materials; troubleshooting

Unit 4: Injection molding machine-machine description study, types and limitations, working principles, process variables, troubleshooting, gas-assisted injection molding, structural foam molding, reaction injection molding process, their industrial applications; troubleshooting

Unit 5: Blow molding process, principles and description of blow mold, extrusion & injection stretch blow molding, parison control, troubleshooting

Unit 6: Miscellaneous processing methods: casting, rotational molding, decoration of polymers, working principles of calendaring and thermoforming process

References:

- ▶ Handbook of Plastic Processes, Harper, Wiley Inter science, 2006
- Principles of Polymer Processing, Tadmor & Gogos, Wiley Inter science, 2013
- Plastics Engineering, R.J. Crawford, Butterworths, 2013
- ➢ Handbook of Plastic Technology, Allen & Baker, CBS Publications, 2004
- Plastic Materials, J.A. Brydson, Butterworth-Heinemann, 1999

Polymer Testing & Characterization						
Teaching Scheme	L-T-P: 3-0-2					

Course Outcome

After completing this course, students will be able to

- Identify different polymers based on their different chemical and physical properties.
- Characterize Polymers' structural and morphological properties by using different testing methods.
- Identify the proper testing method for characterizing the specific properties of polymers.
- Handle the testing and characterization equipment properly.

Syllabus Content:

Unit 1: Introduction to national and international standards, BIS, ISO, ASTM for testing of polymers, identification of common polymers by simple tests

Unit 2: UV-visible, IR and Raman spectroscopy: Principle and Applications in polymer characterization,

Unit 3: NMR spectroscopy in liquid and solid phase (1H and 13C): Principle and Applications in polymer characterization.

Unit 4: Mass spectrometry, separation techniques (GC, LC), Principle and Applications in polymer characterization.

Unit 5: X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, Principle and Applications in polymer characterization.

References:

\triangleright	Polymer	Characterization,	P.	Nicholas	Cheremisinoff,	Elsevier,	eBook
	ISBN: 978	0815518693; Hardco	ver IS	BN: 978081	5514039, 1996		

NMR Spectroscopy of Polymers, Kitayama, Tatsuki, Hatada, Koichi, Springer, 2004

> Analytical Methods for Polymer Characterization, R. Yang, CRC Press, 2018